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We analyze the optimal channel network model for river networks using both analytical and numerical
approaches. This is a lattice model in which a functional describing the dissipated energy is introduced and
minimized in order to find the optimal configurations. The fractal character of river networks is reflected in the
power-law behavior of various quantities characterizing the morphology of the basin. In the context of a
finite-size scaling ansatz, the exponents describing the power-law behavior are calculated exactly and show
mean-field behavior, except for two limiting values of a parameter characterizing the dissipated energy, for
which the system belongs to different universality classes. Two modified versions of the model, incorporating
quenched disorder, are considered: the first simulates heterogeneities in the local properties of the soil and the
second considers the effects of a nonuniform rainfall. In the region of mean-field behavior, the model is shown
to be robust for both kinds of perturbations. In the two limiting cases the random rainfall is still irrelevant,
whereas the heterogeneity in the soil properties leads to different universality classes. Results of a numerical
analysis of the model are reported that confirm and complement the theoretical analysis of the global minimum.
The statistics of the local minima are found to resemble more strongly observational data on real rivers.
@S1063-651X~97!02802-X#

PACS number~s!: 64.60.Ht, 64.60.Ak, 92.40.Fb
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I. INTRODUCTION

Experimental observations on river networks have sho
clear evidence of their fractal character. Data from ma
basins with different geological features have been analy
and have shown power-law behavior of the probability d
tributions of several quantities describing the morphology
the river basin@1–4# over a wide range of scales.

Several statistical models have been proposed@5–10#, but
a complete theoretical understanding is still lacking. R
cently, a simple lattice model derived from an energy mi
mization principle has been proposed@11–13#, which, in
spite of its simplicity, seems to reproduce many features
natural river networks.

Numerical investigations of the model have been p
formed @6,14–16# with different geometrical constraints o
the form of the basin. Furthermore, the model has been
lyzed within the framework of a finite-size scaling ansa
@17#. In the present paper the so-called optimal channel
work model@11,12# is studied analytically and exact resul
are obtained.

In addition, generalized models taking into account
presence of quenched disorder are considered. Random
is introduced in two different ways: one modeling the inh
mogeneity of the soil and the other nonuniformity in t
rainfall. Analytical results are also given in these two cas
Results of numerical simulation in Sec. V confirm a
complement the analytic predictions.

In Sec. II we describe the lattice model and derive
551063-651X/97/55~2!/1298~13!/$10.00
n
y
ed
-
f

-
-

f

-

a-

t-

e
ess
-

s.

e

scaling laws. The relationship between exponents is also
rived. The exponents characterizing the power-law distri
tions of drained areas and mainstream lengths are expre
in terms of a single independent exponent: the wande
exponent in the self-affine case and the fractal dimension
the self-similar basin. The section ends with the definition
the optimal channel network model and with a short disc
sion of the underlying minimization principle. Section III i
entirely devoted to an analytical study of the model on
simple fractal: the Peano basin. The solution is given exa
and is used to give bounds in Sec. IV. The distributions
areas and lengths are evaluated and shown to exhibit
form predicted by the finite-size scaling ansatz. In Sec. IV
analytical results in the absence of disorder are derived.
model is shown to exhibit three distinct universality class
for different values of a parameter characterizing the dis
pated energy. Heterogeneities in the soil properties and
dom rainfall are considered in the generalized models of S
IV B. Analytical results for these cases are also deduc
Numerical results pertaining to the search for the glo
minimum of the dissipated energy with a simulated anne
ing algorithm are given in Sec. V A and numerical results
the statistics of the local minima are given in Sec. V B. S
tion VI summarizes the results.

II. DEFINITIONS AND DERIVATION OF SCALING LAWS

A river basin is described by a scalar field of elevation
Drainage directions are identified by steepest descent, i.e
1298 © 1997 The American Physical Society
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55 1299ANALYTICAL AND NUMERICAL STUDY OF OPTIMA L . . .
the largest local decrease of the elevation field. The prese
of lakes has not been considered, i.e., from each point
water can flow to one of the nearest neighbors. This co
sponds to having all lakes saturated. Within this contex
river network can be represented by an oriented spann
tree over a two-dimensional lattice of arbitrary size a
shape, in which oriented links~one coming out from each
site of the lattice! correspond to drainage directions.

We will consider spanning trees rooted in a corner o
L3L square lattice~the root will correspond to the outlet!.
Site i is upstream respect to sitej if there is an oriented path
from i to j . Associated with each sitei of the lattice is a local
injection of massr i ~the average annual rainfall in the sitei !.
The flow Ai , also referred to as the accumulated area,
thus be defined as the sum of the injections over all
points upstream of sitei ~site i included!. The variablesAi
are thus related by

Ai5(
j
wi , jAj1r i , ~1!

wherewi j is 1 if site j is upstream with respect to sitei and
is a nearest neighbor of it and 0 otherwise. The local inj
tion r i is commonly assumed to be homogeneous and id
tically equal to 1.

In natural basins these areas can be investigated thro
an experimental analysis of digital elevation maps@2#. See
Fig. 1~a! for an example.

The upstream length relative to a site is defined as
length of the stream obtained starting from the site and
peatedly moving in the upstream direction towards the ne
est neighbor with biggest areaA ~the one leading to the
outlet is excluded since it is a downstream site! until a source
is reached, i.e., a site with no incoming links@see Fig. 1~b!#.
If two or more equal areas are encountered, one is rando
selected.

For a given tree, one may consider the probability dis
bution of the following quantities: for a lattice of given linea
sizeL we will call p(a,L) the probability density of accu
mulated areasa and p( l ,L) the probability density of the
upstream lengthsl . These represent the fraction of sites w
areaa or stream lengthl , respectively. We will also conside
the integrated probability distributionsP(a,L), the probabil-
ity to find an accumulated area bigger thana andP( l ,L),
i.e., the probability to have a site with an upstream len
bigger thanl .

Both these probability distributions, here defined in t
simple case of the lattice model, were originally introduc
to describe real rivers and experimentally found to scale
power laws leading to the formulation of a finite-size scali
ansatz@17#

p~a,L !5a2t f S aaCD , ~2!

p~ l ,L !5 l2cgS ll CD , ~3!

where f (x) and g(x) are scaling functions accounting fo
finite-size effects andaC and l C are the characteristic are
and length, respectively. The functionsf (x) and g(x) are
ce
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postulated to have the following properties: whenx→` they
go to zero sufficiently fast to ensure normalization; wh
x→0 they tend to a constant to yield a simple power-la
behavior of the probability distributions in the large-si
limit. This also implies thatt andc are bigger than one.

The characteristic area and length are postulated to s
as

aC;Lw, ~4!

l C;Ldl. ~5!

In river basins, anisotropies are always present due to a n
zero average slope of the landscape and the presence of
ity. Thus one has to distinguish between a typical longitu
nal lengthL and a typical perpendicular oneL' ~these two
lengths are measured along the two principal axes of iner!,
which scale as

L'5LH, ~6!

FIG. 1. ~a! Basin of Fella River in northeast Italy reconstructe
from a digital elevation map.~b! Lattice river basin of sizeL55. In
each sitei the value of the accumulated areaAi is displayed. The
darkest line represents the main stream of the entire basin.
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1300 55COLAIORI, FLAMMINI, MARITAN, AND BANAVAR
giving aC;L11H, i.e.,w511H. H is known as the Hurs
exponent and of course 0<H<1. In what follows, for the
sake of simplicity, we consider basins of square shape;
above relations then refer to the dimension of a generic s
basin inside the bigger one, whose dimensions are fixed f
outside.

Thew exponent thus corresponds tow511H. Thedl ex-
ponent, characterizing the typical length, can be assume
be the fractal dimension of a stream~for fractal river net-
works, each rivulet going from any site to the outlet is
fractal with the same fractal dimension! and is such that
1<dl<11H. The bounds correspond to a straight line an
space-filling behavior. For self-affine river basins we exp
dl51 and H,1, whereas, whenH51, dl.1 in the self-
similar case. For the same quantities, the integrated prob
ity distributions can be analogously written

P~a,L !5a12tFS a

L11HD , ~7!

P~ l ,L !5 l 12cGS l

Ldl D , ~8!

which follow from Eqs.~2! and ~3! with

F~x!5xt21E
x

1`

dy y2t f ~y!, ~9!

G~x!5xc21E
x

1`

dy y2cg~y!, ~10!

where sums over the variabley have been replaced by inte
grals in large-L limit.

From the above definitions and the properties off it easily
follows that

^an&;L ~11H !~n2t11! ~11!

for anyn.t21, while ^an&;const ifn,t21. Note that both
a andl have a lower cutoff that is one. Equation~11!, evalu-
ated forn51, gives, for the average area,

^a&;L ~11H !~22t!. ~12!

The mean accumulated area^a& can be easily shown to b
equal to the distance from a site to the outlet, averaged o
all sites. In effect, in the sum over all the downstreams~the
rivulets going from each site to the outlet!, the number of
times each bond~of unit length! appears exactly equals th
accumulated area of the associated site. Thus summing
all Ai is equivalent to a sum over all the downstream leng

^a&5^ l downstream&. ~13!

^l downstream& can be evaluated by replacing in the sum t
distance of each point from the outlet measured along
stream with the corresponding Euclidean distanced(x) to the
powerdl ,

^ l downstream&5
1

L2 (
x
l downstream~x!5

1

L2 (
x
d~x!dl;Ldl.

~14!
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This fact is general and the argument we used does not n
the knowledge of the downstream length distribution. T
distribution, however, can be explicitly derived at least in t
case ofdirectednetworks. We calldirected those networks
such that each oriented link has a positive projection alo
the diagonal oriented towards the outlet.

The reason to introduce this class of networks is that ri
basins often have a quasi-directed character due to the
that they are typically grown on a slope that gives a prefer
direction to the flow. Moreover, directed trees are mu
more simple to handle analytically than ‘‘undirected’’ one

For such trees consider the set of 2L diagonals orthogona
to the one passing through the outlet: the downstream len
is the same for all the points on the same diagonal. Thus
number of points at a given distancel ~Nl! to the outlet can
be easily seen to be

Nl5 H l11, l51,...,L
2L112 l , l5L11,...,2L. ~15!

Thus the probability density for the downstream lengths
the form of a power law with exponent21 times a scaling
function of the argumentl /L:

pdownstream~ l ,L !5 l21f downstreamS lL D , ~16!

with

f downstream~x!5min~x2,2x2x2!, 0<x<2. ~17!

The first moment of this distribution again gives Eq.~14!
with dl51, which is the expected result for the fractal dime
sion of a directed tree. This result, together with Eq.~14!,
suggests that downstream the length distribution might h
the scaling form

pdownstream~ l ,L !5 l21f downstreamS l

Ldl D ~18!

for the general case.
Equations~13! and ~14! lead to the following expression

for the average area:

^a&;Ldl. ~19!

From Eqs.~19! and ~12! we get the scaling relation

11H5
dl

22t
. ~20!

A well-known hydrological law, Hack’s law@18#, relates
the length of the longest streaml in the drained area to the
drained areaa of the basin:

l;ah. ~21!

The accepted value ofh is h50.5760.06 @19–21#, whose
difference from the Euclidean value 0.5 leads to the fi
suggestion of the fractal nature of rivers@1#. From Eqs.~4!
and ~5! it follows that
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55 1301ANALYTICAL AND NUMERICAL STUDY OF OPTIMA L . . .
h5
dl

11H
. ~22!

Together withp and p one can define the conditiona
probability p̃( l ua) of finding a main stream with lengthl in
a basin with accumulated areaa. The simplest scenario i
that Eq.~21! still holds and@17# p̃( l ua) is a sharply peaked
function of l with respect toa, i.e., there exists a well
defined constraint between lengths and areas

p̃~ l ua!5d~ l2ah! ~23!

or, more generally@22#,

p̃~ l ua!5 l21g̃S l

ahD . ~24!

For the probability densityp, p, and p̃ the following con-
sistency equation must hold:

p~ l ,L !5E
1

L~11H !

da p̃~ l ua!p~a,L !, ~25!

which gives, in the large-L limit,

~c21!dl5~t21!~11H ! ~26!

relating the exponents in the distribution of lengths and
the distribution of accumulated areas.

The scaling relations~20! and ~26! can be expressed in
simpler form, observing that botht andc depend ondl and
H only in the combinationdl /(11H)5h, whereh is the
parameter appearing in Hack’s law~21!. Thus

t522h, ~27!

c5
1

h
. ~28!

The exponents characterizing the distributions of accum
lated areas and upstream length are thus related by the si
expression

t522
1

c
. ~29!

For self-affine river basins

H,1, dl51, ~30!

and all exponents can be expressed in terms of the H
exponentH, giving

t5
112H

11H
, ~31!

c511H, ~32!

while in the self-similar case

H51, dl.1, ~33!

yielding
n

-
ple

rst

t522
dl
2
, ~34!

c5
2

dl
. ~35!

Note that in both casest<3
2. The equality holds only when

H5dl51, which corresponds to the mean-field situati
@23#. Likewise,h> 1

2.
A recently formulated lattice model@11,12,24# based on a

minimization principle seems to reproduce quite well t
main characteristics of river networks. In this model, a ru
for selecting particular configurations in the space of sp
ning trees is given. The ‘‘right’’ configurations, called opt
mal channel networks~OCNs!, are obtained on minimizing a
dissipated energy, written as

E5(
i
kiDz~ i !Qı , ~36!

whereQı is the flow rate~the mean annual discharge! in the
bond coming out from the site,i , Dz( i ) is the height drop
along the drainage direction, andki characterizes the loca
soil properties such as the erodability. It will be taken to
equal to one for each bond for homogeneous river netwo

Given a field of elevations, drainage directions are usua
identified by steepest descent, i.e., by the largest downw
gradient“z( i ) of the scalar fieldz( i ). This allows us to
obtain another expression for the dissipated energy on a
ing the following considerations:~i! in the case of uniform
rainfall in time and space and

Qi;Ai

and ~ii ! experimental observations on rivers suggest an e
pirical relationship between the flow rate and the drop
elevation:

Dz~ i !;Qi
g21,

with a numerical value around 0.5 forg. Thus one obtains
apart from a multiplicative constant, the alternative expr
sion of Eq.~36!,

E5(
i
kiAi

g , ~37!

which was proposed by Rinaldo and co-workers@11,12,24#
and will be analyzed further in this paper.

III. THE PEANO BASIN

The Peano basin is a deterministic space-filling fractal
which exact calculations can be carried out@25#. It has a
spanning treelike structure not too dissimilar to that of r
basins. The scaling laws for such a basin can be obta
exactly and the dissipated energy~37! can be estimated. The
latter provides an upper bound for the minimum energy d
sipated by an OCN and will be a crucial ingredient for t
calculations to follow.

The Peano basin is obtained as follows. Start with
oriented link. At step 2 such a link generates four new lin
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FIG. 2. ~a! Peano basin at iteration step
T50–3, with the accumulated areas displaye
~b! To obtain the Peano basin at a time stepT11,
one keeps the basin at a time stepT, cuts the
outlet, and joins four copies of what is obtaine
as illustrated in the figure. In this way, the recu
sion relation can be easily understood.
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two resulting from the subdivision in half of the old link an
preserving its orientation and the other two having a co
mon extreme in the middle point of the old link and bo
oriented toward it@see Fig. 2~a!#. At each successive step, fo
each link four new oriented links are substituted in the w
previously described. AfterT steps the fractal hasNT54T

points ~excluding the outlet! and it can be mapped on
square lattice of sizeL52T with bonds connecting first an
second neighbors to form a spanning tree.

We can associate with each sitei of the Peano basin~it-
erated until stepT! an areaAi(T) as in the previously de
fined lattice model of river networks. LetVT denote the set o
distinct values assumed by the variableAi at stepT. It can be
easily checked thatVT containsVT21 and 2T21 distinct val-
ues. ThusVT contains 2T distinct numbers. Let us defin
A[ø T50

` VT andan the increasing sequence of numbers
A ~the distinct values ofAi that can be generated iteratin
the construction!. For such a sequence, the following ru
holds:

an53S (
k
ck~n!4kD 11, n50,1,..., ~38!

where theck(n) are the coefficients of the binary expansi
of n [n5(kck(n)2

k]. In the construction described in Fig
2~b!, denote byM n

T the number of sitesi with Ai5an at step
T. The following recursion relation then holds:

Mn
T5H 4Mn

T2121, T.t~an!
1, T5t~an!
0, T,t~an!,

~39!
-

y

wheret(an) is the first step in which an area with valuean
appears and is given by

t~an!5 H0, n50
11@ log2~n!#, n.0, ~40!

where@ # is the integer part. Solving Eq.~39! one gets

Mn
T5H 0, T,t~an!

2
3 4

T2t~an!1 1
3 , T>t~an!,

~41!

and thus all thean created at the same time step have
same probabilitypT(an)[p(an ,L52T)5M n

T/NT . Then the
integrated distribution of areasP(Ai.an ,L52T) assumes a
very simple expression foran of the form 4t @one can easily
check from Eq.~38! that a2t2154t# and is given by

P~Ai.a54t, L52T!5a12tFS a

L11HD , ~42!

having the form~7! with

t53/2, H51, ~43!

and

F~x!5 1
3 ~12x!, 0,x,1, ~44!

andF(x)50 whenx.1.
Equation ~42! is obtained on observing thatP(Ai.a

54t, L52T)5(n52t
2T pT(an) depends onn only through

t(an), allowing one to replace the sum overn with a sum
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over the stepss. Moreover, for each steps.0 there are 2s21

areas with the samet(an)5s. Thus

P~Ai.a54t, L52T!5 (
s5t11

T S 23 4~T2s!1
1

3D 2s21

4T

5
1

3
22t~1222~ t2T!!

5
1

3
a21/2S 12

a

L2D . ~45!

Similarly, choosingl of the form l52t and observing that a
stepT the sites with upstream length greater than or equa
2t are the ones in which the accumulated area exceeds 4t, we
find that

P~ l>2t, L52T!5L12cGS l

Ldl D , ~46!

which is of the form~8! with

c52, dl51, ~47!

and

G~x!5 1
3 ~12x2!. ~48!

In Sec. IV we will need some estimates of the mean va
of A i

g for a Peano basin of sizeL52t,

^Ag&5
1

L2 (
i
Ai

g5 (
n50

`

pT~an!an
g . ~49!

From the expression foran , it follows that

3

4
4t~an!,an<4t~an! ~50!

@t(an) is the time of creation foran#, giving

~ 3
4 !ga~L52T!<^Ag&<a~L52T!, ~51!

where

a~L52T![
2

3
1

1

34T
1(

t51

T S 23 4~T2t !1
1

3D 2t21

4T
4gt.

~52!

Performing the summation, one gets, in the large-size lim

a;5
1

3 S 11
1

1222g21D , g, 1
2

1

3 ln 2
ln L, g5 1

2

1

122122g L
2g21, g. 1

2 .

~53!

From Eq.~51!, one gets
to

e

t,

^A~L !g&;H const, g, 1
2

ln L, g5 1
2

L2g21, g. 1
2 ,

~54!

which will be essential to obtain an energy bound for t
lattice OCN model.

The scaling exponents for the Peano basin can also
obtained by a renormalization-group argument. Let us c
sider, for example, the scaling of the accumulated areas

The self-similar structure of the Peano basin sugges
natural ‘‘decimation’’ procedure. The idea is the followin
Consider the equations relating areas at time stepT. Then
eliminate the variables related to the sites that are not pre
at time stepT21. This leads to an effective equation descr
ing the same physics on a tree scaled down by a factor

For the sake of simplicity let us consider the Peano ba
at the second step of iteration. In Fig. 3 letAn

(2) denote the
variables related to sites that are present at stepT51 and
Bn

(2) denote the ones that will be eliminated by decimatio
The upper label refers to the step. In what follows it will b
useful to write the equations in terms ofÃ n

(T)5An
(T)21 and

B̃ n
(T)5Bn

(T)21. The areas at stepT52 are related by

Ã1
~2!53B̃1

~2!13,

B̃1
~2!5Ã0

~2!12B̃0
~2!13, ~55!

B̃0
~2!50.

Elimination of theB̃ n
(2) leads to

Ã1
~2!53Ã0

~2!112. ~56!

At time stepT51 the relation between areas is straightfo
ward:

Ã1
~1!53Ã0

~1!13. ~57!

Equations~56! and ~57! are the same if

Ãn
~T11!54Ãn

~T! , ~58!

i.e.,

~An
~T11!21!54~An

~T!21!. ~59!

FIG. 3. Renormalization-group argument for the Peano basinB
sites die under decimation.
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Denoting byn(T11)(a) the number of sites with area great
thana at stepT11, one can easily observe that the numb
of decimated sites withA.a is half of the total number of
sites withA.a,

n~T11!~a!52n~T!~a/4!. ~60!

Noting that the total number of sites at stepT, NT54T,
the integrated probabilityP(An

(T11).a)5n(T)(a)/NT is
given by

P~An
~T11!.a!5bP~An

~T!.a/4!, ~61!

with

b5
n~T11!~a!/4T11

n~T!~a!/4T
5
2/4T11

1/4T
5
1

2
. ~62!

The general solution of Eq.~61! is of the form

P~An
T.a!}a12t ~63!

apart from a superimposed oscillating term given by a p
odic function of ln(a) with period 1

4 @25#. From Eqs.~61!–
~63!

t5 3
2 . ~64!

The same argument can be repeated for the distributio
stream lengths, recovering thec exponent.

IV. ANALYTICAL RESULTS

A. Homogeneous case

We now proceed to an analysis of the characteristics
the global minimum of the functionalE for g in the range
@0,1# for the homogeneous case. Let us consider first the
limiting casesg50 and 1. If we calll i the weighted length of
the stream connecting thei th site to the outlet~calculated
assigning to each bond a lengthki!, it is straightforward to
show that

(
i
kiAi5(

i
l i . ~65!

In effect, denoting byD( i ) @U( i )# the set of points down-
stream@upstream# with respect to the pointi and observing
thatA( i ) equals the number of points in the setU( i ) one gets
( i l i5( i( jPD( i )kj5( i( jPU( i )ki5( ikiAi . The minimiza-
tion of the energy dissipation forg51 thus corresponds to
the minimization of the weighted paths connecting every
to the outlet independent of each other. Theg50 case, on the
other hand, corresponds to the minimization of the to
weighted length of the tree

E5(
i
ki . ~66!

In the homogeneous caseki51 ; i , which leads to a high
degeneracy for bothg50 and 1.

Indeed, forg50, each configuration has the same ene
~each spanning tree on aL3L square lattice hasL221
links!. For g51, the minimum of the energy is realized on
r

i-

of

f

o

e

l

y

large subclass of spanning trees, namely, all the direc
trees, in which each link has a positive projection along
diagonal oriented towards the outlet. For the values
gP~0,1! there is a competition between both mechanis
breaking the degeneracy and making the search for the
bal minimum a less trivial problem.

Theg51 case gives a minimum energyE;L3. This can
be derived by observing that all points on a diagonal
thogonal to the one passing through the outlet have the s
distance from the outlet. ThenE5( k51

L21k(k11)
1( k5L

2L22k(2L212k)5L2(L21);L3. Thus the value of
the energy functional is the same for each directed netw
and corresponds to the Scheiddeger model of river netwo
@5#: all directed trees are equally probable. Such a model
be mapped into a model of mass aggregation with inject
that has been exactly solved by Takayasuet al. @26,27#. The
corresponding exponents are

t5 4
3 , c5 3

2 , H5 1
2 , dl51, h5 2

3 . ~67!

These exponents follow easily from the resultH51
2 and from

our scaling solution of Sec. II. The resultH51
2 can be de-

duced with a simple argument: since all directed trees
equally probable, each stream behaves like a single ran
walk in the direction perpendicular to the diagonal throu
the outlet. This implies that its perpendicular wandering
L';L1/2. Comparing with Eq.~6! one getsH51

2.
The g50 case leads to the same energyE;L2 for each

network, thus reducing to the problem of random tw
dimensional spanning trees, whose geometrical prope
have been calculated on a square lattice@28,29#. The results,
in our notation, are

t5 11
8 , c5 8

5 , H51, dl5
5
4 , h5 5

8 . ~68!

Both Eqs.~67! and~68! are consistent with the scaling rela
tions ~27!–~29!.

We now extend our analysis to the whole rangegP@0,1#.
We will rigorously show@30# that, in the thermodynamic
limit, the global minimum in the spaceS of all the spanning
trees of the functionalE~g,T!5(iAı~T!g scales as

min
TPS

E~g,T!;max~L2,L112g! ~69!

for all gP@0,1#. SinceE~g,T! is an increasing function ofg
and it is equal toL2 for g50, for g>0 it is obvious that

E~g,T!>L2. ~70!

We now observe that the sum over all the sites can be
formed in two steps:

E~g,T!5 (
n51

2L21

(
iPDn

Ai~T!g, ~71!

whereDn are the lines orthogonal to the diagonal pass
through the outlet, which we will enumerate starting fro
the corner farthest from the outlet~see Fig. 4!. For directed
spanning trees one can observe that the sum of the area
given lineDn is independent of the particular tree and is
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Sd~k![ (
iPDk

Ai5 H k~k11!/2, k<L
L22Sd~2L212k!, L11<k<2L21,

~72!

whereSd~0![0. This quantity only increases on generalizi
to generic undirected trees and thus for an arbitrary span
tree,

S~k,T![ (
iPDk

Ai~T!>Sd~k!. ~73!

Let us observe that fork50,..., ~L21!,

S~k,T!1S~2L212k,T!>Sd~k!1Sd~2L212k!5L2,
~74!

making it convenient to perform the summation in Eq.~71!
over ‘‘pairs’’ of lines. To get a lower bound forE we need a
further inequality: for every setG

(
iPG

Ai
g>S (

iPG
Ai D g

, ~75!

which follows easily from the Schwartz inequality sinc
Ai>1 and 0<g<1. Now, using Eqs.~71!, ~74!, and~75! we
can write

E~g,T!5 (
n51

2L21

(
iPDn

Ai~T!g5 (
n50

L21

(
iP~DnøD̃n!

Ai
g

> (
n50

L21 S (
iP~DnøD̃n!

Ai~T!D g

5 (
n50

L21

@S~n,T!1S~2L212n,T!#g

> (
n50

L21

L2g5L112g, ~76!

where D̃n5D(2L212n). The equality in the last inequality
holds for directed networks. We can thus write

E~g,T!>L112g. ~77!

Equation~77! together with Eq.~70! gives the lower bound

E~g,T!>max~L2,L112g!, ~78!

FIG. 4. Each dashed line divides the lattice in two parts.( iPD
Ai is at least equal to the number of sites contained in the part o
lattice with borderD and without the outlet.
ng

that holds for everyTPS and thus also for the minimum ove
T. Using the results of Sec. III, we can exhibit a tree
which the bound is realized. In effect, the Peano network
be mapped on a square lattice only considering links betw
first and second nearest neighbors, but Eq.~78! can be analo-
gously obtained for such a lattice on rearranging in an
portune way the summation in Eq.~71!. If we call TP the
spanning tree given by the Peano basin we know from
~54! that, except for logarithmic corrections forg51

2,
E~g,TP!;max(L2,L112g). Thus

min
TPS

E~g,T!<E~g,TP!, ~79!

and we get Eq.~69!.
We now proceed to the calculation of the scaling exp

nents. For a directed path, from Eq.~65!,

^a&;L. ~80!

For generic undirected networks, let us write, as in Eq.~19!,

^a&;Ldl ~81!

~dl could be be somewhat bigger than one if one assum
‘‘quasidirected’’ behavior!. Using Eq.~11! with n5g and the
above result on the scaling of energyE5L2^ag&;L112g,
one gets

2g215~11H !~g2t11!, ~82!

holding forg.t21. Equation~82!, together with the scaling
relation ~20!, can be solved with respect tot and H and
gives, forg.1

2,

t5
3~12g!1~dl21!~11g!

2~12g!1dl21
,

~83!

H5
dl2g

12g

~the constraintg.t21 becomesg.1
2, independently ofdl!.

Thus, ifH<1, for anyg,1, dl51, yielding

t5 3
2 , H51, c52, dl51, h5 1

2 ~84!

for gP~12,1!. The exponents are the same as in the mean fi
theory @26,27# of the Scheidegger model and the same as
the Peano case@31#. Note that Eqs.~83! are meaningless fo
g51, in which case Eq.~84! does not hold, consistent with
the Scheiddeger results~67!.

When 0,g,1
2, all we can say is thatt.11g. However, if

dl51 for any gP~0,1! ~i.e., the optimal channel is quas
directed!, then one might expect thatH51 for all values ofg
and thus Eq.~84! holds in the whole rangegP~0,1!. This
prediction is confirmed by results of numerical simulation

B. Heterogeneous case

In this section we focus our attention on the case in wh
some sort of quenched disorder is present in the basin. T
cases have been analyzed:~i! random bonds, modeling het
erogeneity in the local properties of the soil, and~ii ! random
injection, modeling nonuniformity in the rainfall.

e
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In the first case, we will show that the energy can
bounded from above with the corresponding one in the
sence of disorder. This will give, in the large-L limit, an
upper bound for thet exponent, which we will see is realize
for all the gP~12,1!. In the case of random rainfall, we wi
show that this kind of randomness does not affect the sca
behavior of the dissipated energy in the large-L limit. All the
analytical results found in Sec. IV A for the homogeneo
case, being based on the energy estimate in the therm
namic limit, can thus be extended to that case, giving
same values for the exponents.

In the case of random bonds, we associate with each b
of the L3L square lattice@2L(L21) bonds# a quenched
random variablekb , arbitrarily distributed such that^kb&51.
The labelb ranges over all the bonds of the lattice. T
2L(L21) variables are chosen independent of each o
and identically distributed.

In what follows b~i ,T! will denote the label associate
with the bond coming out from the sitei on the treeT. Let
T* ~g! denote one of the trees on which the minimum of t
energyE~g,T! is realized in the homogeneous case for
given value ofg andS the set of all the spanning trees:

E~g![min
TPS

E~g,T!5(
i
Ai~T!g5(

i
Ai„T* ~g!…g.

~85!

Denoting byED~g! the minimum of the energy in the
heterogeneous case, averaged over the quenched dis
the following inequality holds:

ED~g![Kmin
TPS

(
i
kb~ i ,T!Ai~T!gL

<K (
i
kb„i ,T* ~g!…Ai„T* ~g!…gL

5K (
i
kb„i ,T* ~g!…L Ai„T* ~g!…g5(

i
Ai„T* ~g!…g

5E~g!. ~86!

The energy in the presence of this kind of disorder is th
bounded from above by the energy in the absence of diso
for any value of theg parameter. In the large-size limit thi
result gives bounds on the scaling exponents. Equation~11!
evaluated forn5g gives

^ag&;L ~11HD!~g2t11!, ~87!

which holds for anyg.tD21512hD , thus at least for any
g.1

2 sincehD>1
2. Here and in what follows variables wit

the D index refer to the random bond case. Equation~87!,
compared with Eq.~69!, leads to

~11HD!~g2tD11!12<112g, 1
2<g<1. ~88!

In the case of self-affine behavior, using Eq.~20!, Eq.~88!
gives

HD>1, 1
2<g,1. ~89!
e
-

g

s
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e

nd
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As before, for theg51 case the above inequalities are us
less. In the case of self-similar behavior, inequalities for
fractal dimensiondl ,D can analogously be deduced:

dl ,D<1, 1
2<g<1. ~90!

Because, in general, 0<H<1 and 1<dl<11H, Eqs. ~89!
and~90! together yield, forgP~12,1!, HD51 anddl ,D51, i.e.,
the mean-field values.

Theg51 case has been exactly solved@23# and it can be
mapped into a problem of a directed polymer in a rand
medium or, equivalently, a domain wall in a disordered tw
dimensional ferromagnet@32–34# for which an exact solu-
tion is known. The corresponding values for the expone
are

t5 7
5 , c5 5

3 , H5 2
3 , dl51, h5 3

5 . ~91!

Disorder can be introduced into the system in anot
way, replacing the constant injection in each site of the
tice with a random, quenched, local injection, i.e., a spa
inhomogeneity in the rainfallr i in Eq. ~1!. In order to do
that, one can associate with each sitei of the lattice a random
variable r i . The variables are chosen to be independen
each other, identically distributed and with mean^r i&51.
The accumulated areas must then satisfy, as in Eq.~1!,

Ai5(
j
wi , jAj1r i ~92!

in such a way that

Ai5(


l i , j r j with l i , j

[5
1 if i is connected toj

through upstream drainage directions

or if j5 i

0 otherwise.

~93!

The minimum of the energy averaged over the ‘‘rando
rainfall’’ will be denoted byErr ~g! and for a given value of
g is given by

Err ~g![Kmin
TPS

(
i
Ai~$r j%,T!gL , ~94!

where S denotes the set of all spanning treesT and $r j%
denotes the whole set of random variables. As in Eq.~85!, T*
will be one of the trees for which the minimum of the ener
is realized in the absence of randomness in the rainfall
for a given value ofg. Then
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Err ~g![Kmin
TPS

(
i
Ai~$r i%,T!gL <K (

i
Ai„$r i%,T* ~g!…gL

5K (
i

S (
j

l i , j„T* ~g!…r j D gL
<(

i
(


l i , j„T* ~g!…^r j&

g5(
i
Ai~T* !g5E~g!.

~95!

Thus

Err ~g!<E~g!;min~L2,L112g!. ~96!

In this case, it is possible to bound the energy also fr
below with an argument analogous to that used in Sec. IV
for the homogeneous case. The detailed calculation is g
in the Appendix. Thus one can conclude that

Err ~g!;min~L2,L112g!, ~97!

and all the results of Sec. IV A hold.

V. NUMERICAL RESULTS

A. Global minimum

We have carried out extensive numerical investigations
OCN along two avenues:~i! the search for the global mini
mum with a Metropolis algorithm forg51

2 and ~ii ! the sta-
tistics over local minima forg51

2. Strikingly these yield con-
sistent but different values for the scaling exponents. B
local minimum, we mean a configuration~a spanning tree! of
the network such that no link can be changed without
creasing the energy. The global minimum is of course als
local minimum; but in the two cases we found different s
tistics, which is suggestive of a very rich structure of t
energy landscape. We will postpone the results concern
the latter subject to Sec. V B, focusing our attention only
the scaling properties of the global minimum.

In the computer simulations we considered a square
tice with all sites on one side allowed to be an outlet for
network. Periodic boundary conditions were chosen in
other direction.

Once the simulation has been performed over the wh
lattice, the basin with the biggest drained area is selected
only sites contained therein are used to calculate statis
quantities. Multiple outlets are allowed in order to minimi
finite-size effects. The rainfall is assumed to be uniform o
the whole lattice. The optimization method used is simula
annealing, in which a parameterT analogous to the tempera
ture is introduced and lowered during the simulation. F
eachT value the system is relaxed in the following way.
new allowed configuration ‘‘near’’ the initial one~‘‘near’’
means one differing from the previous one only in one lin!
is randomly chosen. The dissipation energy of the new c
figuration is calculated and compared with the value of
old one. The new configuration is accepted with probabi
1 if DE is negative and with probability exp@2DE/T# other-
wise. In short, a sketch of the algorithm is as follows.

(i) Generation of a random initial configuration.Starting
from a given, fixed tree we obtain a random initial config
A
en

f

a

-
a
-

g
n

t-
e
e

le
nd
al

r
d

r

n-
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ration running steps~ii ! and ~iii ! several times. In this way
only changes preserving the spanning loopless structure
accepted.

(ii) Random changes of the configuration.We select ran-
domly one sitei and then again randomly one of the ‘‘free’’
~not yet belonging to the tree! links connected withi , if any.

(iii) Geometrical controls.The absence of a loop in the
new configuration is checked. If a loop is present, step~ii ! is
repeated.

(iv) Energetic control.The changeDE in the dissipation
energy dissipation is calculated. If it is negative we go on
step ~v!. Otherwise, a random numberp uniformly distrib-
uted in the interval@0,1# is generated and compared with
exp@2DE/T#: if exp[2DE/T]<p we go on to step~v!; oth-
erwise the change is rejected and we go back to step~ii !.

(v) Recalculation of changed quantities.All variables in-
volved in the change are updated.

(vi) Lowering of the T parameter.In each cycle, theT
parameter is decreased with the following rule: at thenth
cycleT is given byT(n)5anT(0), wherea is a parameter
very close to 1~we choosea50.986! andT~0! is a suitable
chosen constant.

After step~i!, steps~ii !–~v! are repeated many times, say
N. Then we go to step~vi! in which the T parameter is
lowered and the entire algorithm@except step~i!# is repeated.
The annealing process stops whenT reaches very low values
~'1024!.

The simulations have been repeated, varying the initi
configuration for a sizeL5128. The statistical quantities do
not depend on the initial data. The integrated probability di
tributions for the accumulated areas and mainstream leng
averaged over ten trials are shown in Figs. 5 and 6 and g
t51.5060.02 andc52.0060.02 where the error is esti-
mated from the root mean square over the ten trials. The
results are in perfect agreement with Eq.~29! and confirm
that the analytical results hold wheng51

2.

FIG. 5. DistributionP(A.a) versusa for a basin of linear size
L5128. Such a distribution has been obtained by means of
Metropolis-like algorithm~attempting to seek the global minimum!
and averaged over ten samples. The slope displayed is 12t
520.50. The accumulated areas are in units of the square latt
parameter, which is chosen to be 1.
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B. Local minima

Homogeneous OCNs yield results in good agreement w
experimental data on rivers when the statistics based on l
minima is calculated. This suggested@35# the concept of fea-
sible optimality according to which nature is ‘‘unable’’ t
reach the true ground state when complex systems are
volved in optimization problems. The optimization just sto
when one of the local minima is reached. Within this fram
work, the scaling properties of real rivers should be rep
duced considering the ensemble of local minima.

We have performed the search for local minima with
algorithm equivalent to aT50 Metropolis scheme, i.e., on
in which new configurations are accepted only if energe
cally favorable. The simulation has been repeated 40 tim
starting with different, randomly chosen, initial data an
varying the sizeL of the system:L532,64,128.

The values obtained for the characteristic exponents of
probability distribution considered above,t and c, are in

FIG. 7. P(A.a) versus a for three different sizes of the
basin: L532, 64, and 128. Local minima are considered here;
distribution is obtained by averaging over 40 samples. The units
the same as in Fig. 5. The slope is 12t520.45.

FIG. 6. DistributionP~l.l! versusl 0 for the same conditions as
in Fig. 5. The slope 12c521.00. The upstream lengths are in uni
of the lattice parameter, which is chosen to be 1.
th
al

in-

-
-

i-
s,

e

very good agreement with experimental data. The distri
tions obtained starting from different initial condition do n
substantially differ from one another, all yielding the sam
value for the exponents. The statistical quantities thus se
to be robust with respect to variations of initial condition
showing the self-averaging of the scaling parameters.

Results obtained averaging over 40 local minima
shown in Figs. 7 and 8 and givet51.4560.02 andc51.82
60.02. The results are consistent with the scaling relatio
A collapse test has been done to verify the consistency
numerical values of the exponents with the finite-size sca
hypothesis~Fig. 9!.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the optimal channel n
work for the drainage basin of a river. Within the framewo
of the finite-size scaling hypothesis for the distributions
accumulated areas and mainstream lengths, we deduce
exact scaling behavior for the tree~drainage network! for
which the absolute minimum of dissipated energy is realiz
in both the homogeneous case and in the presence of
domness. The scaling exponents in the homogeneous
are found to be the mean-field ones and differ from tho
measured in real rivers.

e
re

FIG. 8. Same as in Fig. 7 for the upstream length distributi
The units are the same as Fig. 6. The slope is 12c520.82.

FIG. 9. Result of the collapse test for the accumulated a
distribution from the data in Fig. 7.
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Numerical results were obtained both for the statistics
the global minimum~confirming the analytical predictions!
and for local minima. The statistical exponents characte
ing the local minima definitely differ from the mean-fie
ones. They seem to be in a distinct universality class an
agreement with data from real rivers. This suggests that
rivers, during their evolution, do not visit all of configuratio
space, but are soon trapped in a metastable state, i.e., a
minima of the dissipated energy.
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APPENDIX

Using the notation of Sec. IV A, we denote byDn the
lines orthogonal to the diagonal passing through the ou
enumerated starting from the corner farthest from the ou
with 0. It will be useful to associate each lineDn with
n<L21 with a D̃n :

D̃n5D~2L212n! . ~A1!

In what follows we will choose the$r i% to be independen
random variables with values in the interval@0,2# and such
that ^r i&51. We then proceed to the first step of the proof
in Sec. IV A, observing that the sum over all the sites in E
~94! defining the energy can be performed in two steps:
te

ter
f
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Err ~g!>Kmin
TPS

(
i
Ai~$r i%,T!gL

>Kmin
TPS

(
n50

L21 S (
iP~DnøD̃n!

Ai~$r i%,T!D gL
> (

n50

L21 K S (
k51

n

(
iPDk

r i1 (
k51

2L212n

(
iPDk

r i D gL ,
~A2!

where in the last step the equality holds only for direct
trees. Expression~A2! can be written in a more convenien
form by introducing

m i5 H2,1 iPDk , with k<n
otherwise. ~A3!

Then

Err> (
n50

L21

2gL2gK S (
k51

2L212n

(
iPDk

m i r i

2L2
D gL

> (
n50

L21

2gL2g

(
k51

2L212n

(
iPDh

m i^r i&

2L2
52gL112g,

~A4!

where the last inequality follows on observing that

(
k51

2L212n

(
iPDk

m i5L2.

Thus, forr i<2, the argument between the angular bracket
less than or equal to one. Furthermore, for anyx and
lP@0,1#, xg>x. Equation ~A4!, together with Eq.~96! of
Sec. IV B, gives

2gL112g<Err ~g!<E~g!;L112g ~A5!

and thus
Err~g!;L112g. ~A6!
tt.
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