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We analyze the optimal channel network model for river networks using both analytical and numerical
approaches. This is a lattice model in which a functional describing the dissipated energy is introduced and
minimized in order to find the optimal configurations. The fractal character of river networks is reflected in the
power-law behavior of various quantities characterizing the morphology of the basin. In the context of a
finite-size scaling ansatz, the exponents describing the power-law behavior are calculated exactly and show
mean-field behavior, except for two limiting values of a parameter characterizing the dissipated energy, for
which the system belongs to different universality classes. Two modified versions of the model, incorporating
guenched disorder, are considered: the first simulates heterogeneities in the local properties of the soil and the
second considers the effects of a nonuniform rainfall. In the region of mean-field behavior, the model is shown
to be robust for both kinds of perturbations. In the two limiting cases the random rainfall is still irrelevant,
whereas the heterogeneity in the soil properties leads to different universality classes. Results of a numerical
analysis of the model are reported that confirm and complement the theoretical analysis of the global minimum.
The statistics of the local minima are found to resemble more strongly observational data on real rivers.
[S1063-651%97)02802-X

PACS numbe(s): 64.60.Ht, 64.60.Ak, 92.40.Fb

[. INTRODUCTION scaling laws. The relationship between exponents is also de-
rived. The exponents characterizing the power-law distribu-
Experimental observations on river networks have showrions of drained areas and mainstream lengths are expressed
clear evidence of their fractal character. Data from manyin terms of a single independent exponent: the wandering
basins with different geological features have been analyze@xponent in the self-affine case and the fractal dimension for
and have shown power-law behavior of the probability dis-the self-similar basin. The section ends with the definition of
tributions of several quantities describing the morphology ofthe optimal channel network model and with a short discus-
the river basi{1-4] over a wide range of scales. sion of the underlying minimization principle. Section Il is

Several statistical models have been propdsed. ), but ~ €ntirely devoted to an analytical study of the model on a
a complete theoretical understanding is still lacking. Re_S|mple fractal: the Peano basin. The solution is given exactly

cently, a simple lattice model derived from an energy mini-and is used to give bounds in Sec. IV. The distributio_n_s of
mization principle has been proposéil—13, which, in areas and lengths are evaluated and shown to exhibit the

s of 1 sy seems o repodce many feures oS00 e M2 s stz 1 e, VA
natural river networks. y )

Numerical investigations of the model have been per_model is shown to exhibit three distinct universality classes

formed[6,14—16 with different geometrical constraints on for different values of a parameter characterizing the dissi-

the form of the basin. Furthermore, the model has been an ated energy. Heterogeneities in the soil properties and ran-

lyzed within the framework of a finite-size scaling ansatz om rainfall are considered in the generalized models of Sec.

[17]. In the present paper the so-called optimal channel ne VB. Analyucal results fo.r these cases are also deduced.
umerical results pertaining to the search for the global

work model[11,12 is studied analytically and exact results minimum of the dissipated energy with a simulated anneal-

are obtained. . . ; ) )
In addition, generalized models taking into account the't?]g 2',{%3::2? (?fr?hge“llggeilnniﬁ?rﬁz Qrgnc;lvr;l:]r?nerlsceag r\e/sgltssfe%r_
presence of quenched disorder are considered. Randomn%%sn VI summarizes the results 9 ' '
is introduced in two different ways: one modeling the inho- '
mogeneity of the soil and the other nonuniformity in the
rainfall. Analytical results are also given in these two cases,; berNITIONS AND DERIVATION OF SCALING LAWS
Results of numerical simulation in Sec. V confirm and
complement the analytic predictions. A river basin is described by a scalar field of elevations.

In Sec. Il we describe the lattice model and derive theDrainage directions are identified by steepest descent, i.e., by
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the largest local decrease of the elevation field. The presence
of lakes has not been considered, i.e., from each point the
water can flow to one of the nearest neighbors. This corre-
sponds to having all lakes saturated. Within this context, a
river network can be represented by an oriented spanning-
tree over a two-dimensional lattice of arbitrary size and
shape, in which oriented linkone coming out from each
site of the lattice correspond to drainage directions.

We will consider spanning trees rooted in a corner of a
L XL square latticthe root will correspond to the out)et
Sitei is upstream respect to sijdf there is an oriented path
fromi to j. Associated with each siieof the lattice is a local
injection of mass; (the average annual rainfall in the sije
The flow A, also referred to as the accumulated area, can
thus be defined as the sum of the injections over all the
points upstream of site (sitei included. The variablesA,
are thus related by

Ai:; Wiyl-Aj+l’i, (1)

wherew;; is 1 if site j is upstream with respect to siteand ! ! 133 2 !
is a nearest neighbor of it and 0 otherwise. The local injec-
tion r; is commonly assumed to be homogeneous and iden- 3
tically equal to 1.

In natural basins these areas can be investigated through
an experimental analysis of digital elevation md@$ See ° 8 3
Fig. 1(a) for an example.

The upstream length relative to a site is defined as the
length of the stream obtained starting from the site and re- ) . |
peatedly moving in the upstream direction towards the near- 10 J/

est neighbor with biggest are& (the one leading to the
outlet is excluded since it is a downstream kitatil a source @ v
is reached, i.e., a site with no incoming linkeee Fig. 1)]. » B ’ ¢ :
If two or more equal areas are encountered, one is randomly
selected. FIG. 1. (a) Basin of Fella River in northeast Italy reconstructed
For a given tree, one may consider the probability distri-from a digital elevation magb) Lattice river basin of siz& =5. In
bution of the following quantities: for a lattice of given linear each sitei the value of the accumulated ar@ais displayed. The
sizeL we will call p(a,L) the probability density of accu- darkest line represents the main stream of the entire basin.
mulated areas and =(l,L) the probability density of the
upstream lengthk These represent the fraction of sites with postulated to have the following properties: whena« they
areaa or stream length, respectively. We will also consider go to zero sufficiently fast to ensure normalization; when
the integrated probability distributior(a,L), the probabil-  x_.0 they tend to a constant to yield a simple power-law
ity to find an accumulated area bigger tharandII(I,L),  pehavior of the probability distributions in the large-size
i.e., the probability to have a site with an upstream lengthimit. This also implies thatr and i are bigger than one.

bigger thanl. S o The characteristic area and length are postulated to scale
Both these probability distributions, here defined in thegg

simple case of the lattice model, were originally introduced
to describe real rivers and experimentally found to scale as

. . . . . ac~L¢, 4
power laws leading to the formulation of a finite-size scaling
ansat417]
ICN I_dI . (5)
— *Tf a
pal)=a a_c ' 2 In river basins, anisotropies are always present due to a non-
zero average slope of the landscape and the presence of grav-
- ity. Thus one has to distinguish between a typical longitudi-
=(l,L)=1"%g o)’ (3 nal lengthL and a typical perpendicular ore (these two

lengths are measured along the two principal axes of ingertia

where f(x) and g(x) are scaling functions accounting for Which scale as
finite-size effects and andl. are the characteristic area
and length, respectively. The functiofi¢x) and g(x) are L, =L", (6)
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giving ac~L**", i.e,, o=1+H. H is known as the Hurst This fact is general and the argument we used does not need
exponent and of coursesH=<1. In what follows, for the the knowledge of the downstream length distribution. This
sake of simplicity, we consider basins of square shape; thdistribution, however, can be explicitly derived at least in the
above relations then refer to the dimension of a generic subzase ofdirectednetworks. We calldirectedthose networks
basin inside the bigger one, whose dimensions are fixed frorauch that each oriented link has a positive projection along
outside. the diagonal oriented towards the outlet.

The ¢ exponent thus corresponds¢e=1+H. Thed, ex- The reason to introduce this class of networks is that river
ponent, characterizing the typical length, can be assumed toasins often have a quasi-directed character due to the fact
be the fractal dimension of a streaffor fractal river net-  that they are typically grown on a slope that gives a preferred
works, each rivulet going from any site to the outlet is adirection to the flow. Moreover, directed trees are much
fractal with the same fractal dimensjoand is such that more simple to handle analytically than “undirected” ones.
1=d;=<1+H. The bounds correspond to a straight line and a For such trees consider the set &f @iagonals orthogonal
space-filling behavior. For self-affine river basins we expecto the one passing through the outlet: the downstream length
d,=1 and H<1, whereas, wheH=1, d,>1 in the self- is the same for all the points on the same diagonal. Thus the
similar case. For the same quantities, the integrated probabiftumber of points at a given distantg\)) to the outlet can

ity distributions can be analogously written be easily seen to be
a [+1, I=1,...L
P ek il _ ' yree
Plal)=a F(L”H)’ ™ M=loL+1-1, 1=L+1,..2. (15)

1-p Thus the probability density for the downstream lengths has
I(L,L)=1"""G Lal ®)  the form of a power law with exponentl times a scaling
function of the argument/L:
which follow from Egs.(2) and(3) with

I
—1 e _ Wdownstrearﬁl !L) =" lfdownstrearé E) ’ (16)
F(x)=x" J dy y "f(y), €)
X

with
+ oo
G(X)=X“’*1L dy y “g(y), (10) f gownsreahX) = MIN(X2,2X—x2), 0<x<2. (17

The first moment of this distribution again gives EG4)

with d;=1, which is the expected result for the fractal dimen-
sion of a directed tree. This result, together with Et{),
suggests that downstream the length distribution might have

where sums over the variabjehave been replaced by inte-
grals in largek limit.
From the above definitions and the propertie$ afeasily

follows that .
the scaling form
<an>~L(1+H)(n77—+1) (11)
—_1-1
for anyn>7—1, while(a") ~const ifn<7—1. Note that both Tdownstrearhl ;L) =1 fdownstrear( L ) (18)
a andl have a lower cutoff that is one. Equati@til), evalu-
ated forn=1, gives, for the average area, for the general case.
(a)~LA+HI2= 7). (12) Equations(13) and(14) lead to the following expression

for the average area:

The mean accumulated aréa) can be easily shown to be
equal to the distance from a site to the outlet, averaged over
all sites. In effect, in the sum over all the downstredthe
rivulets going from each site to the oullethe number of
times each bondof unit length appears exactly equals the

(a)~L9, (19

From Egs.(19) and(12) we get the scaling relation

accumulated area of the associated site. Thus summing over 1+H= i (20)
all A; is equivalent to a sum over all the downstream lengths 2—
(@)= (I gownstrean- (13 A well-known hydrological law, Hack’s lay18], relates

o the length of the longest strealnin the drained area to the
(I downstreamt €anN be evaluated by replacing in the sum thedrained area of the basin:

distance of each point from the outlet measured along the
stream with the corresponding Euclidean distashcd to the |~ah. (21)
powerd,,
The accepted value di is h=0.57+0.06 [19-21], whose
(I a:i S r(,X)=i S d(x)d~Ld difference from the Euclidean value 0.5 leads to the first
downstreant™ | 2 £« "downstrea L? < ' suggestion of the fractal nature of rives]. From Eqs.(4)
(14 and(5) it follows that
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(22

Together with7 and p one can define the conditional

probability 77(I|a) of finding a main stream with lengthin

a basin with accumulated ar@a The simplest scenario is

that Eq.(22) still holds and[17] 7(l|a) is a sharply peaked
function of | with respect toa, i.e., there exists a well-
defined constraint between lengths and areas

7(lja)=8(1—aM) (23
or, more generally22],

- [

m(lla)=1"1g aﬁ). (24)

For the probability densityr, p, and7 the following con-
sistency equation must hold:

L(1+H) .
w(I,L)zf da m(l|a)p(a,L), (25
1
which gives, in the largé- limit,
(y—1)d=(7—1)(1+H) (26)

1301
d,
T=2— 5, (34)
B 2
y= a (395

Note that in both cases<i. The equality holds only when
H=d,=1, which corresponds to the mean-field situation
[23]. Likewise, h=3.

A recently formulated lattice modél1,12,24 based on a
minimization principle seems to reproduce quite well the
main characteristics of river networks. In this model, a rule
for selecting particular configurations in the space of span-
ning trees is given. The “right” configurations, called opti-
mal channel network€@CNSs, are obtained on minimizing a
dissipated energy, written as

E=>, kAz()Q,, (36)

whereQ, is the flow rate(the mean annual dischanga the
bond coming out from the sité, Az(i) is the height drop
along the drainage direction, atgl characterizes the local
soil properties such as the erodability. It will be taken to be
equal to one for each bond for homogeneous river networks.
Given a field of elevations, drainage directions are usually

relating the exponents in the distribution of lengths and inidentified by steepest descent, i.e., by the largest downward

the distribution of accumulated areas.

gradientVz(i) of the scalar fieldz(i). This allows us to

The scaling relation§20) and (26) can be expressed in a obtain another expression for the dissipated energy on add-

simpler form, observing that bothand s depend ord, and
H only in the combinationd,/(1+H)=h, whereh is the
parameter appearing in Hack’s la®1). Thus

7=2-—Nh, (27

1
=17 (28)

The exponents characterizing the distributions of accumu-

ing the following considerationdi) in the case of uniform
rainfall in time and space and

Qi~A

and (i) experimental observations on rivers suggest an em-
pirical relationship between the flow rate and the drop in
elevation:

Az(i)~Q

lated areas and upstream length are thus related by the simple

expression
P (29)
¥
For self-affine river basins
H<1, d=1, (30)

with a numerical value around 0.5 for Thus one obtains,
apart from a multiplicative constant, the alternative expres-
sion of Eq.(36),

E=Z kAT, (37

which was proposed by Rinaldo and co-workgtg,12,24
and will be analyzed further in this paper.

and all exponents can be expressed in terms of the Hurst

exponentH, giving

_1+2H

T H S
Yy=1+H, (32

while in the self-similar case
H=1, d>1, (33

yielding

Ill. THE PEANO BASIN

The Peano basin is a deterministic space-filling fractal on
which exact calculations can be carried ¢@f]. It has a
spanning treelike structure not too dissimilar to that of real
basins. The scaling laws for such a basin can be obtained
exactly and the dissipated enen@y) can be estimated. The
latter provides an upper bound for the minimum energy dis-
sipated by an OCN and will be a crucial ingredient for the
calculations to follow.

The Peano basin is obtained as follows. Start with an
oriented link. At step 2 such a link generates four new links,
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FIG. 2. (8) Peano basin at iteration steps
T=0-3, with the accumulated areas displayed.
(b) To obtain the Peano basin at a time stepl,
one keeps the basin at a time st€pcuts the
outlet, and joins four copies of what is obtained
as illustrated in the figure. In this way, the recur-
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two resulting from the subdivision in half of the old link and wheret(a,) is the first step in which an area with valag
preserving its orientation and the other two having a comappears and is given by
mon extreme in the middle point of the old link and both
oriented toward ifsee Fig. 2a)]. At each successive step, for 0, n=0
each link four new oriented links are substituted in the way t(""”):{1+[Iogz(n)], n>0,
previously described. AfteT steps the fractal hall;=4"
points (excluding the outletand it can be mapped on a where[ ] is the integer part. Solving E¢39) one gets
square lattice of sizé =2" with bonds connecting first and
second neighbors to form a spanning tree. - 0, T<t(a,)
We can associate with each sitef the Peano basifit- T 24T @+ I T>y(a,)
erated until stepl') an areaA;(T) as in the previously de- ' w

fined lattice model of river networks. L&t denote the setof 5,4 thus all thea.. created at the same time step have the
distinct values assumed by the variableat stepT. Itcan be  ¢5me probabilitypr;(an)zp(an L=2T)=M J/N;. Then the
easily checked tha’y containsVy_; and 2~ * distinct val- integrated distribution of ared®(A,>a,,L=2") assumes a
ues. TwhusVT contains i d|st|ng:t numbers. Let us defme_ very simple expression fa,, of the form 4 [one can easily
A=U T:QV,T anda, the increasing sequence of number; iNcheck from Eq(38) thata,_,=4!] and is given by

A (the distinct values of\; that can be generated iterating

the construction For such a sequence, the following rule a
holds: P(A>a=4', L:25=aLﬂF<Eﬁﬁ

(40)

(41)

: (42

having the form(7) with

a,=3 +1, n=0.1,..., (39)

; c(n)4

r=3/2, H=1, (43)

where thec,(n) are the coefficients of the binary expansion 44
of n [n=2kck(n)2k]. In the construction described in Fig.
2(b), denote byM | the number of siteswith A, =a,, at step F(x)=3(1-x), 0<x<1, (44)
T. The following recursion relation then holds:
andF(x) =0 whenx>1.
aM]71-1, T>t(ay) Equation (42) is obtained on observing tha@(A,>a
T

MI={1, T=t(a,) (39 =4', L=2T)=32__pr(a,) depends onn only through

0, T<t(a,), t(a,), allowing one to replace the sum overwith a sum
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over the steps. Moreover, for each step>0 there are 21

areas with the samga,)=s. Thus £ "
£, v, w
T 2 ZS 1 4 )
. —Agt —oT\— (T— s) + +
P(A|>a 41 L=2 ) S:EHl (34 3) 4T £ ?\ & +B‘f‘ s A A A
— § 2—t(1_22(t—T)) 4 N B
1 a

=3 a2 1- P) . (45) = .

Similarly, choosingd of the forml=2' and observing that at FIG. 3. Renormalization-group argument for the Peano b&sin.
stepT the sites with upstream length greater than or equal teites die under decimation.
2" are the ones in which the accumulated area exceedsed

find that const, <3
l A(LYN~< InL, =1 54
(=24, L=2T)=L1-¢G(T), (46) (A(L)7) Y=2 (54)

L™ L2y*l 1

Y>3

which is of the form(8) with which will be essential to obtain an energy bound for the

lattice OCN model.
y=2, d=1, (47) The scaling exponents for the Peano basin can also be
obtained by a renormalization-group argument. Let us con-
sider, for example, the scaling of the accumulated areas.
The self-similar structure of the Peano basin suggests a
natural “decimation” procedure. The idea is the following.
Consider the equations relating areas at time Stefhen
%liminate the variables related to the sites that are not present
at time stepl —1. This leads to an effective equation describ-
1 o ing the same physics on a tree scaled down by a factor 2.
wo — v y For the sake of simplicity let us consider the Peano basin
(A7) L? 2.: AT= 2 pr(anal. “9) at the second step of iteration. In Fig. 3 fef?) denote the
variables related to sites that are present at $tefd and

and
G(x)=2(1—x?). (48)

In Sec. IV we will need some estimates of the mean value
of A7 for a Peano basin of sie=2",

From the expression fa,,, it follows that B(Z) denote the ones that will be eliminated by decimation.
The upper label refers to the step. In what follows it will be
3 ey ) useful to write the equations in terms af"=A(—1 and
74 aps4T (50 BM=BM_1. The areas at stép=2 are related by
2
[t(a,) is the time of creation foa,], giving A( = 3B '+3,
() a(L=2T)=<(A")=a(L=27), (51) BYY=A+2By" +3, (55)
where B{'=0.
) T -1 Elimination of theB ) leads to
T = — (T t | an
“b=2)=3 34T 2 ( f3) '( ) AP=3AP+12. (56)
52

At time stepT=1 the relation between areas is straightfor-
Performing the summation, one gets, in the large-size limityyard:

" 1) y<3 A =3A+3. (57)
3 1-2v+)
Equations(56) and (57) are the same if
a~ InL, y=3 (53 - ~
3In2 ALT-# l):4A§1T) , (58)
2y—1 1
L 1-21"27 L% y>e ie.,

From Eq.(51), one gets (AT Y —1)=4(A"~1). (59
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Denoting byn("*Y)(a) the number of sites with area greater large subclass of spanning trees, namely, all the directed
thana at stepT+1, one can easily observe that the numberrees, in which each link has a positive projection along the

of decimated sites witlh>a is half of the total number of
sites withA>a,

nT@)=2nM(a/4). (60)

Noting that the total number of sites at stepN;=4",
the integrated probabilityP(A{"P>a)=nM(a)/N; is
given by

P(AT"YV>a)=hP(A">a/4), (61)
with
n(T+l)(a)/4T+l 2/4T+l 1
n‘"’(a)l4 1/4 2
The general solution of Eq61) is of the form
P(Al>a)xal™" (63)

diagonal oriented towards the outlet. For the values of
ve(0,1) there is a competition between both mechanisms
breaking the degeneracy and making the search for the glo-
bal minimum a less trivial problem.

The y=1 case gives a minimum ener@~L3. This can
be derived by observing that all points on a diagonal or-
thogonal to the one passing through the outlet have the same
distance from the outlet. ThenE=X\_lk(k+1)
+3 28 %k(2L—1-k)=L2%(L—1)~L3. Thus the value of
the energy functional is the same for each directed network
and corresponds to the Scheiddeger model of river networks
[5]: all directed trees are equally probable. Such a model can
be mapped into a model of mass aggregation with injection
that has been exactly solved by Takayasal.[26,27. The
corresponding exponents are

H=

N

¥=3 , d=1, h=3. (67)

These exponents follow easily from the reddi1 and from

=4
T=73,

apart from a superimposed oscillating term given by a periour scaling solution of Sec. Il. The resw=2% can be de-

odic function of In@) with period  [25]. From Eqs.(61)—
(63)

(64)

3
T=3.

The same argument can be repeated for the distribution c}fL

stream lengths, recovering thfeexponent.

IV. ANALYTICAL RESULTS

A. Homogeneous case

We now proceed to an analysis of the characteristics of

the global minimum of the functiondt for y in the range

[0,1] for the homogeneous case. Let us consider first the tw

limiting casesy=0 and 1. If we call; the weighted length of
the stream connecting thi¢h site to the outlef{calculated
assigning to each bond a lengdt]), it is straightforward to
show that

> kA= 1.

(65)

In effect, denoting by®(i) [L(i)] the set of points down-
stream[upstreanh with respect to the point and observing
thatA(i) equals the number of points in the $&i) one gets
Zi|i=2i§]j e’D(i)kj:EiEjeil(i)kiZEikiAi . The minimiza-

duced with a simple argument: since all directed trees are
equally probable, each stream behaves like a single random
walk in the direction perpendicular to the diagonal through
the outlet. This implies that its perpendicular wandering is
~L¥2 Comparing with Eq(6) one getsH=3.

The y=0 case leads to the same enefjy L? for each
network, thus reducing to the problem of random two-
dimensional spanning trees, whose geometrical properties
have been calculated on a square latf2®29. The results,

in our notation, are

-
(][]

Loy=% H=1, d=2 h=2. (68)
Both Eqgs.(67) and(68) are consistent with the scaling rela-
tions (27)—(29).

We now extend our analysis to the whole range[0,1].
We will rigorously show([30] that, in the thermodynamic
limit, the global minimum in the spacg of all the spanning

trees of the functiondt(y,7)=2;A,(7)” scales as

T=

|

minE(y,7) ~max(L?,L1"27)
Te8

(69

for all ye[0,1]. SinceE(,7) is an increasing function of
and it is equal td_2 for y=0, for =0 it is obvious that

tion of the energy dissipation fop=1 thus corresponds to E(y,T)=L2.
the minimization of the weighted paths connecting every site '

to the outlet independent of each oth_er_. T)heO case, on the We now observe that the sum over all the sites can be per-
other hand, corresponds to the minimization of the totak, . med in two steps:

weighted length of the tree '

E=> k.

(70

2L-1

E(y,T)= gl iE A(T)?,

eD,

(66) (72)

In the homogeneous case=1 Vi, which leads to a high whereD, are the lines orthogonal to the diagonal passing
degeneracy for both=0 and 1. through the outlet, which we will enumerate starting from
Indeed, fory=0, each configuration has the same energythe corner farthest from the outlé&tee Fig. 4 For directed
(each spanning tree on laxL square lattice had?~1  spanning trees one can observe that the sum of the areas in a
links). For y=1, the minimum of the energy is realized on a given line D,, is independent of the particular tree and is
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that holds for everye S and thus also for the minimum over
7. Using the results of Sec. Ill, we can exhibit a tree on

y which the bound is realized. In effect, the Peano network can
D be mapped on a square lattice only considering links between
- D, first and second nearest neighbors, but(#8) can be analo-
gously obtained for such a lattice on rearranging in an op-
" D, portune way the summation in E¢rl). If we call 7, the
spanning tree given by the Peano basin we know from Eq.
D, (54) that, except for logarithmic corrections foy=3%,

E(y,7p)~max(L2,L1*27). Thus

FIG. 4. Each dashed line divides the lattice in two pa¥s.p
A, is at least equal to the number of sites contained in the part of the
lattice with borderD and without the outlet.

minE(y, <E(y,7p), (79
TeS

and we get Eq(69).

s,=3 A k(k+1)/2, ksL We now proceed to the calculation of the scaling expo-
dl )_iepk T L2-S4(2L—1-k), L+1<k=2L-1, nents. For a directed path, from E§5),
(72 (a)~L. (80)

whereS,(0)=0. This quantity only increases on generalizing

to generic undirected trees and thus for an arbitrary spanning®" 9eneric undirected networks, let us write, as in @),

tree, (ay~Ld (81
Sk,D)= >, A(T)=Sy(k). (73  (d; could be be somewhat bigger than one if one assumes a
ieDy “quasidirected” behavior. Using Eq.(11) with n=+y and the
above result on the scaling of ener@y=L%*a”)~L*"27,
Let us observe that fak=0,...,(L—1), one gets
S(k,7)+S(2L—1—k,7‘)>$d(k)+8d(2L—1—k):L2(, ) 2y—1=(1+H)(y—7+1), (82)
74

holding for y>7—1. Equation(82), together with the scaling
relation (20), can be solved with respect toand H and
gives, fory>3,

making it convenient to perform the summation in Efl)
over “pairs” of lines. To get a lower bound fd we need a
further inequality: for every sdf

3=+ d-1)(1+y)

Y =
2 A?z(z Ai> , (75 7 2(1—y)+d—1 '
iel iel . (83)
which follows easily from the Schwartz inequality since H:ﬂ
A;=1 and G=y=<1. Now, using Egs(71), (74), and(75) we 1-y
can write (the constrainty>7—1 becomesy>3, independently ofl,).
2L-1 L-1 Thus, ifH=1, for anyy<1, d,=1, yielding
E(y,7)= Ai(T)"= A
(rD nzl .ED () nZO ie(gug%) ' =3, H=1, ¢=2, d=1, h=3 (84)

y for ye(3,1). The exponents are the same as in the mean field
theory[26,27] of the Scheidegger model and the same as in
the Peano cagd@1]. Note that Eqs(83) are meaningless for
v=1, in which case Eq(84) does not hold, consistent with
the Scheiddeger resul(§7).

When 0<y<3, all we can say is that>1+ . However, if
d,=1 for any ye(0,1) (i.e., the optimal channel is quasi-
directed, then one might expect that=1 for all values ofy
and thus Eq.(84) holds in the whole rangee(0,1). This
prediction is confirmed by results of numerical simulations.

L-1
>n§0 ( > A

ie(DaUDy)

L-1
ZO [S(n,)+S(2L—1—n,T)]"

L-1
=3 =142y, (76)
n=0

where 5H=D(2L_1_n). The equality in the last inequality
holds for directed networks. We can thus write B. Heterogeneous case

E(y,Tj=L1*27, 77) In this section we focus our attention on the case in which
some sort of quenched disorder is present in the basin. Two
Equation(77) together with Eq(70) gives the lower bound cases have been analyzéd:random bonds, modeling het-
erogeneity in the local properties of the soil, dnd random
E(y,7)=max L2 L"?7), (78 injection, modeling nonuniformity in the rainfall.
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In the first case, we will show that the energy can beAs before, for they=1 case the above inequalities are use-
bounded from above with the corresponding one in the abless. In the case of self-similar behavior, inequalities for the
sence of disorder. This will give, in the largedimit, an  fractal dimensiord, , can analogously be deduced:
upper bound for the-exponent, which we will see is realized
for all the ye(3,1). In the case of random rainfall, we will
show that this kind of randomness does not affect the scaling dp<1, 3=ys<L (90)
behavior of the dissipated energy in the latgémit. All the
analytical results found in Sec. IV A for the homogeneous i
case, being based on the energy estimate in the thermodfpecause. in general.<H<1 and }=d,<1+H, Eqs.(89)
namic limit, can thus be extended to that case, giving th&nd(90) together yield, forye (3,1), Hp=1 andd, p=1, i.e.,
same values for the exponents. the mean-field values. ,

In the case of random bonds, we associate with each bond The y=1 case has been exa_ctly soles] and_|t can be
of the LXL square lattice2L (L—1) bond§ a quenched mapped into a problem of a directed polymer in a random

random variable,, , arbitrarily distributed such thdk,)=1. ~ Medium or, equivalently, a domain wall in a disordered two-
The labelb ranges over all the bonds of the lattice. The dimensional ferromagndB82-34 for which an exact solu-

2L(L—1) variables are chosen independent of each othdion is known. The corresponding values for the exponents

and identically distributed. are
In what follows b(i,7) will denote the label associated
with the bond coming out from the siieon the treeZ. Let —
T*(y) denote one of the trees on which the minimum of the
energy E(y,7) is realized in the homogeneous case for a
given value ofy andS the set of all the spanning trees: Disorder can be introduced into the system in another
way, replacing the constant injection in each site of the lat-
—mi _ Y — A y tice with a random, quenched, local injection, i.e., a spatial
E() TEISE(%T) 2| A(D Z AT (). inhomogeneity in the rainfalt; in Eqg. (1). In order to do
(85  that, one can associate with each sitd the lattice a random
variabler;. The variables are chosen to be independent of
Denoting byEp(y) the minimum of the energy in the each other, identically distributed and with meén)=1.
heterogeneous case, averaged over the quenched disordEhe accumulated areas must then satisfy, as in(Bg.
the following inequality holds:

o~
<
Il
wlo
T
Il
wIN

, dy=1, h=%. (92)

ED(’)/)E<m|nzl kb(l,'T)AI(,I)7> Alzz WI,jAj+rI (92)
TeS

$< > kb(i,']‘*(y))Ai(/]*(')’))y> in such a way that

I
=<Z kb(i,my))>Ai(7*(7))7:Z A(T*(y))” A= Ajry with A
e M, ,

=E). (86) 1 if i is connected toj
The energy in the presence of this kind of disorder is thus | through upstream drainage directions
bounded from above by the energy in the absence of disorder ) orif j=i (93

for any value of they parameter. In the large-size limit this
result gives bounds on the scaling exponents. Equdfign
evaluated fon=1 gives

0 otherwise.

The minimum of the energy averaged over the “random

1 (L+Hp)(y—7+1)
(an~L o ' (87) rainfall” will be denoted byE,, () and for a given value of

which holds for anyy>ry—1=1—hp, thus at least for any v is given by

>3 sincehp=3. Here and in what follows variables with

the D index refer to the random bond case. Equati8n),

compared with Eq(69), leads to Err(7)5<fpi22 Ai({fj},ﬂ’>, (94

(1+Hp)(y—mp+1)+2<1+4+2y, 3<y<1. (89
_ _ _ where S denotes the set of all spanning tregsand {r;}
_Inthe case of self-affine behavior, using £20), Eq.(88)  denotes the whole set of random variables. As in(B8), 7%
gives will be one of the trees for which the minimum of the energy
is realized in the absence of randomness in the rainfall and
Hp=1, 3=<y<Ll (89)  for a given value ofy. Then
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E”w)z<¢i22i Ai({ri},fﬂ>s<2 Ai<{ri},7*(y))7> 2°
Y 2.4

=<Z (2 m,,-a*(y»rj) > .
w2t

=2 2 MNTXN)=2 A(T)=E(9). =3
(95) 2"
Thus 2-16
Err('}’)$E("}’)Nmin(Lz-L1+2y)- (96) 2° o7 2 2° >° 210 '212 2

In this case, it is possible to bound the energy also from
below with an argument analogous to that used in Sec. IV A
for the homogeneous case. The detailed calculation is given

in the Appendix. Thus one can conclude that FIG. 5. DistributionP(A>a) versusa for a basin of linear size

L=128. Such a distribution has been obtained by means of a

(97) Metropolis-like algorithm(attempting to seek the global minimym
and averaged over ten samples. The slope displayed—is 1
=-—0.50. The accumulated areas are in units of the square lattice
parameter, which is chosen to be 1.

En(y)~ min(L21L1+27),

and all the results of Sec. IV A hold.

V. NUMERICAL RESULTS . _ 3 , _
ration running stepsii) and (iii) several times. In this way

A. Global minimum only changes preserving the spanning loopless structure are
We have carried out extensive numerical investigations oficcepted.
OCN along two avenuesi) the search for the global mini- (i) Random changes of the configuratioive select ran-

mum with a Metropolis algorithm foy=3 and (i) the sta- domly one sité and then again randomly one of the “free”
tistics over local minima foty=3. Strikingly these yield con-  (not yet belonging to the trédinks connected with, if any.
sistent but different values for the scaling exponents. By a (jii) Geometrical controls.The absence of a loop in the
local minimum, we mean a configurati¢a spanning treeof  new configuration is checked. If a loop is present, $tefs

the network such that no link can be changed without inrepeated.

creasing the energy. The global minimum is of course also a (jy) Energetic control The changeAE in the dissipation
local minimum; but in the two cases we found different sta-energy dissipation is calculated. If it is negative we go on to
tistics, which is suggestive of a very rich structure of thestep(v). Otherwise, a random number uniformly distrib-
energy landscape. We will postpone the results concermingiaq in the interval0,1] is generated and compared with
the latter subject to Sec. V B, focusing our attention only Onexp:—AE/T]: if exp[— AE/T]<p we go on to stev); oth-

the scaling properties of the global minimum. erwise the change is rejected and we go back to Gigp

In the computer simulations we considered a square lat- ; 2 . X
tice with all sites on one side allowed to be an outlet for the (v) Recalculation of changed quantitiesll variables in-

network. Periodic boundary conditions were chosen in thé/OIV?d n the.change are updated.
other direction. (vi) Lowgrmg of the T parameterln egch cycle, ther
Once the simulation has been performed over the whol@arameter is decreased WLth the following rule: at the
lattice, the basin with the biggest drained area is selected arfyCle T is given byT(n)=a"T(0), wherea is a parameter
only sites contained therein are used to calculate statisticAl€rY close to liwe choosex=0.986 andT(0) is a suitable
quantities. Multiple outlets are allowed in order to minimize chosen constant.
finite-size effects. The rainfall is assumed to be uniform over After step(i), steps(ii)—(v) are repeated many times, say,
the whole lattice. The optimization method used is simulatedN- Then we go to stegvi) in which the T parameter is
annealing, in which a paramet€ranalogous to the tempera- lowered and the entire algorithfexcept stefi)] is repeated.
ture is introduced and lowered during the simulation. ForThe annealing process stops wiieneaches very low values
eachT value the system is relaxed in the following way. A (=10%.
new allowed configuration “near” the initial on€‘near” The simulations have been repeated, varying the initial
means one differing from the previous one only in one)link configuration for a sizé =128. The statistical quantities do
is randomly chosen. The dissipation energy of the new conrot depend on the initial data. The integrated probability dis-
figuration is calculated and compared with the value of theributions for the accumulated areas and mainstream lengths
old one. The new configuration is accepted with probabilityaveraged over ten trials are shown in Figs. 5 and 6 and give
1 if AE is negative and with probability ekp AE/T] other-  7=1.50+0.02 and=2.00=0.02 where the error is esti-
wise. In short, a sketch of the algorithm is as follows. mated from the root mean square over the ten trials. These
(i) Generation of a random initial configuratiorstarting  results are in perfect agreement with E89) and confirm
from a given, fixed tree we obtain a random initial configu-that the analytical results hold wher-3.
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o 2 °
2
24 it
2—4
= 3
2 = 2
=
12 2-1 :
>
0 5
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FIG. 8. Same as in Fig. 7 for the upstream length distribution.
FIG. 6. DistributionIT(I>\) versud, for the same conditions as The units are the same as Fig. 6. The slope-ig/¥ —0.82.
in Fig. 5. The slope * ¢=—1.00. The upstream lengths are in units

of the lattice parameter, which is chosen to be 1. very good agreement with experimental data. The distribu-

tions obtained starting from different initial condition do not
substantially differ from one another, all yielding the same
value for the exponents. The statistical quantities thus seem

Homogeneous OCNSs yield results in good agreement wittio be robust with respect to variations of initial conditions,
experimental data on rivers when the statistics based on loc&howing the self-averaging of the scaling parameters.
minima is calculated. This suggest&$] the concept of fea- Results obtained averaging over 40 local minima are
sible optimality according to which nature is “unable” to shown in Figs. 7 and 8 and give=1.45+0.02 andy=1.82
reach the true ground state when complex systems are in=0.02. The results are consistent Wlth_ the scallng_relatlons.
volved in optimization problems. The optimization just stops” collapse test has been done to verify the consistency of
when one of the local minima is reached. Within this frame_numerlca] va_Iues of the exponents with the finite-size scaling
work, the scaling properties of real rivers should be repronyPothesis(Fig. 9).
duced considering the ensemble of local minima.

We have performed the search for local minima with an VI. SUMMARY AND CONCLUSIONS

algorithm equivalent to & =0 Metropolis scheme, i.e., one In this paper, we have studied the optimal channel net-

in which new configurations are accepted only if energetiyork for the drainage basin of a river. Within the framework

cally favorable. The simulation has been repeated 40 timef the finite-size scaling hypothesis for the distributions of

starting with different, randomly chosen, initial data andaccumulated areas and mainstream lengths, we deduced the

varying the sizeL of the systeml =32,64,128. exact scaling behavior for the treedrainage network for

The values obtained for the characteristic exponents of thashich the absolute minimum of dissipated energy is realized

probability distribution considered above,and ¢, are in  in both the homogeneous case and in the presence of ran-
domness. The scaling exponents in the homogeneous case
are found to be the mean-field ones and differ from those

B. Local minima

o
2 measured in real rivers.
o 20
<
T - 2°
o2 ‘g
w
A
<
o @ 2*®
of > > N 2° 2° 210 212 ot
a o712 )
2° 2* . 2? 2°
alL”

FIG. 7. P(A>a) versusa for three different sizes of the
basin: L=32, 64, and 128. Local minima are considered here; the
distribution is obtained by averaging over 40 samples. The units are FIG. 9. Result of the collapse test for the accumulated area
the same as in Fig. 5. The slope is #&=—0.45. distribution from the data in Fig. 7.
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Numerical results were obtained both for the statistics of _
the global minimum(confirming the analytical predictions Ei(y)= mmZ Alrit, D
and for local minima. The statistical exponents characteriz- Tes
ing the local minima definitely differ from the mean-field y
ones. They seem to be in a distinct universality class and in mmE B i({ri},7))
agreement with data from real rivers. This suggests that real Tesn=0 Ie(D Uy
rivers, during their evolution, do not visit all of configuration n 2L-1-n y
space, but are soon trapped in a metastable state, i.e., a local > z < E E ri+ E E r >
minima of the dissipated energy. n=0 \ | k=1 ieDy k=1 ieDy
(A2)
where in the last step the equality holds only for directed
ACKNOWLEDGMENTS trees. ExpressiofA2) can be written in a more convenient
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L-1 I(Zl IE il
= Dy
Ei= E 272 BT E—
APPENDIX
1
Using the notation of Sec. IV A, we denote Y, the L-1 kzl iEEDh i
lines orthogonal to the diagonal passing through the outlet, = 272 507 =27L.1%27,
enumerated starting from the corner farthest from the outlet n=0
with 0. It will be useful to associate each lirB, with (Ad)
n<L-—1 with aD,: . . .
where the last inequality follows on observing that
2L-1-n
~ k=1 iED wi=L®
Dn=DL-1-n)- (A1) «

Thus, forr;<2, the argument between the angular brackets is
less than or equal to one. Furthermore, for axyand
Ne[0,1], xyz_x. Equation(A4), together with Eq.(96) of

In what follows we will choose thér;} to be independent S€c. IV B, gives

random variables with values in the .inter\[@I,Z] and such 2VLIT2Y<E, (y)<E(y)~L1+2Y (A5)

that(r;)=1. We then proceed to the first step of the proof as

in Sec. IV A, observing that the sum over all the sites in Eq.and thus

(94) defining the energy can be performed in two steps: Eq(y)~L1"2 (AB)
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